日韩精品久久一区二区三区_亚洲色图p_亚洲综合在线最大成人_国产中出在线观看_日韩免费_亚洲综合在线一区

Global EditionASIA 中文雙語Fran?ais
World
Home / World / Newsmakers

Study finds clues to living a stronger, longer life

Xinhua | Updated: 2019-01-03 09:36
Share
Share - WeChat
[Photo provided to China Daily]

CHICAGO - Researchers from the University of Michigan (UM) Life Sciences Institute have uncovered a cause of declining motor function and increased frailty in tiny aging worms, and identified a molecule that can be targeted to improve motor function.

As humans and animals age, their motor functions progressively deteriorate. Millimeter-long roundworms called nematodes exhibit aging patterns remarkably similar to those of other animals, and they only live about three weeks, making them an ideal model system for studying aging.

To better understand how the interactions between cells changed as worms aged, the researchers investigated the junctions where motor neurons communicate with muscle tissue.

They identified a molecule called SLO-1, namely slowpoke potassium channel family member 1, that acts as a regulator for these communications. The molecule dampens neurons' activity, slowing down the signals from neurons to muscle tissue and reducing motor function.

The researchers manipulated SLO-1, first using genetic tools and then using a drug called paxilline. In both cases, they observed two major effects in the roundworms: not only did they maintain better motor function later in life, they also lived longer than normal roundworms.

"It's not necessarily ideal to have a longer lifespan without improvements in health or strength," said Shawn Xu, a professor of molecular and integrative physiology at the UM Medical School. "But we found that the interventions improved both parameters-these worms are healthier and they live longer."

More surprisingly, the timing of the interventions drastically changed the effects on both motor function and lifespan. When SLO-1 was manipulated early in the worms' life, it had no effect on lifespan and in fact had a detrimental effect on motor function in young worms. But when the activity of SLO-1 was blocked in mid-adulthood, both motor function and lifespan improved.

As the SLO-1 channel is preserved across many species, the researchers hope these findings will encourage others to examine its role in aging in other model organisms.

In the next step, the researchers hope to determine the importance of the SLO-1 channel in early development in the worms, and to better understand the mechanisms through which it affects lifespan.

The findings were published on Wednesday in Science Advances.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 国产高清免费 | 国产成年人在线观看 | 国产精品毛片久久久久久久 | 毛片免费看电影 | 91色综合 | 玖玖福利 | 国产精品久久久久久久免费大片 | 日韩精品视频在线免费观看 | 精品在线不卡 | 亚洲综合日韩欧美一区二区三 | 特黄特色的免费大片看看 | 91成人精品| 亚洲人网站 | 色网在线免费观看 | 国产目拍亚洲精品99久久精品 | 久草福利站 | 亚洲黄色高清视频 | 亚洲精品电影在线观看 | 亚洲 欧美 自拍偷拍 | v视界成人影院在线视频 | 国产精品极品美女在线观看免费 | 国产精品毛片久久久久久久 | 久久精品一区二区免费播放 | 国产日韩欧美自拍 | 91精品国产综合久久久蜜臀粉嫩 | 青草在线观看 | 欧美激情综合网 | 日韩一级片在线免费观看 | 欧美在线观看视频网站 | 艹逼| 国产福利一区二区 | 成人全黄三级视频在线观看 | 中国免费毛片 | 一区二区三区免费在线 | 在线播放高清视频www | 天天插天天操 | 成人国内精品久久久久影 | 免费网站看av片 | 人人性人人性碰国产 | 国产目拍亚洲精品99久久精品 | 蜜桃视频在线观看免费视频网站www |