日韩精品久久一区二区三区_亚洲色图p_亚洲综合在线最大成人_国产中出在线观看_日韩免费_亚洲综合在线一区

English 中文網 漫畫網 愛新聞iNews 翻譯論壇
中國網站品牌欄目(頻道)
當前位置: Language Tips > Special Speed News VOA慢速

Major progress in health through technology

[ 2013-01-23 14:28]     字號 [] [] []  
免費訂閱30天China Daily雙語新聞手機報:移動用戶編輯短信CD至106580009009

Get Flash Player

Download

From VOA Learning English, this is SCIENCE IN THE NEWS in Special English. I’m Bob Doughty.

And I’m Faith Lapidus. Today, we tell about a woman who can use signals from her brain to move a robotic arm. We tell about efforts to develop an experimental gene treatment for patients with heart disease. And we explain how American computers are helping medical workers in Zimbabwe study the condition of their patients.

A woman paralyzed from the neck down has learned to use her thoughts to control a specially-designed motorized arm. The arm is the product of years of research on mind-controlled artificial limbs.

Researchers in the American state of Pennsylvania say the motorized arm is the most advanced mind-controlled prosthetic, or replacement limb ever made. They created the device to help return some muscle control to Jan Scheuermann. She is suffering from a degenerative neuromuscular disease that paralyzed her from the neck down. She has no control of her arms and legs.

The motorized right arm has a five-fingered, fully-jointed hand. It enables Ms. Scheuermann to pick up and hold objects, and feed herself.

Neurobiologist Andrew Schwartz led the University of Pittsburgh research team that developed the prosthetic arm. He says researchers placed about 200 electrodes in the woman’s left cerebral cortex. The left cerebral cortex is the part of the brain that people use to move their right arm.

Dr. Schwartz says the electrodes recorded what the woman’s brain cells were doing when she thought about moving the arm.

“And that was enough information that we could then decode from those recordings, what the intention of the subject was, the way she wanted to move her arm and her wrist and close her hand. We could decode the information from those neurons to allow us to do that.”

Jan Scheuermann took part in a 13-week-long program to teach her brain to move the arm. But she did not need that much time. She was able to use her mind to move the robotic arm after just two weeks of training.

She reportedly told researchers that she planned to use the arm to feed herself some chocolate. When she was able to do that, it made the research team very happy.

Andrew Schwartz says his team plans to build another artificial arm, so people like Ms. Scheuermann can hold and move objects using two hands.

“And really the satisfying part is that we’re not just making a machine move, we’re actually recreating natural humanoid movements. So we’re capturing all the beauty and grace and skill of a real movement, and allowing these subjects to basically return to a certain amount of function that they used to have.”

The researchers would like to create a wireless system that helps the brain communicate with the robotic limbs. The brain’s signals would be changed into messages that computers can understand. People could then use the arms or legs in their homes without wires or help from scientists.

A report describing the prosthetic arm was published in the journal The Lancet.

A patient with an arrhythmia, or irregular heartbeat, might one day be able to have a normal heartbeat with the injection of a single gene. The experimental gene would help to create a natural heart pacemaker. This would end the need for placing an electronic device in a person’s chest to control the heartbeat.

Researchers in California created what they are calling “biological pacemaker cells” by adding a single gene to a virus. They then injected the engineered virus into the hearts of guinea pigs. The animals had been bred to suffer from arrhythmia.

The gene caused the creation of an exact copy of the sino-atrial node in the heart’s upper right chamber. Other studies have shown that this node helps to keep the heart beating normally. The gene changed heart muscle cells -- called cardiomyocytes -- into natural pacemaker cells.

Eduardo Marban is director of the Cedars-Sinai Health Institute in Los Angeles. He says the node, called S-A-N, makes up just 10,000 cells among the ten billion heart muscle cells. He says the tissue made by the inserted gene looks almost like the structure it replaces.

“If we were to give scientists who are specialized in this area the data to look at it then compare it to a genuine pacemaker cell -- which, as I said, are exceedingly rare -- to the ones we created by putting a gene into an ordinary heart cell, it’d be, they’d be hard-pressed to tell the difference.”

Dr. Marban estimates that five to six billion dollars is spent each year worldwide on electronic pacemakers for millions of patients. But these man-made pacemakers can cause life-threatening infections. And every five to seven years, the batteries that supply power must be changed. This requires another operation.

Dr. Marban says the devices are not right for all patients. And others are too sick to use them. He says researchers plan to put the experimental gene in very sick patients in about two years. They want to prove the gene is both safe and effective.

“Basically, what we are going to look for are patients who already have an electronic pacemaker, who develop a severe infection and need to have the electronic pacemaker taken away. And then, during the time the patients are free of an electronic pacemaker, they, their hearts need to be sustained by some means, and we hope that we would be able to create this biological pacemaker to keep the heart going between treatments.”

A report on the natural cardiac pacemaker was published in the journal Nature Biotechnology.

Finally, the United States has launched a program to help improve Zimbabwe’s health information management system. The program is meant to strengthen investigation and reporting of disease outbreaks and epidemics.

You are listening to a group of health workers. They include doctors and medical aides from Manicaland, an area in eastern Zimbabwe. They were happy because America’s Centers for Disease Control and Prevention had donated laptop computers and other equipment. The computers will be used to store information about patients they treat in the area.

The donation is part of a $2.1 million gift from PEPFAR -- the President’s Emergency Plan for AIDS Relief -- to strengthen Zimbabwe’s health management system.

Paula Morgan is the deputy director of the CDC in Zimbabwe.

“Health wise across the board, particularly around disease detection and surveillance, it’s important to us to capture all of them, but because we do work with the PEPFAR program, we do concentrate on the HIV and AIDS epidemic.”

One of the biggest problems facing Zimbabwe is the HIV/AIDS epidemic. The human immunodeficiency virus, also known as HIV, is the cause of the disease AIDS. The United Nations says new HIV infection rates have dropped by 50 percent in Zimbabwe. But there are still 1.2 million people infected with the virus.

The government in Zimbabwe has little money for health care programs. As a result, the country has failed to meet the targets of what health officials have called the “Abuja Declarations.” Under those goals, African governments are required to spend 15 percent of their budgets on health-related issues.

Ponesai Nyika is a director of the Zimbabwe Ministry of Health.

“This donation is really, really important. It came at a time when we really need it, because what has been happening is at the local clinic they’re using hard copies, which is a paper-based system. They record their patients in registers and tally sheets, where they just tally against the patient’s age, name and the diagnosis, the treatment that they have been given.”

Ponesai Nyika says all of that work is now done with the CDC’s donation of computers to Zimbabwe.

PEPFAR is paying a non-profit group, Research Triangle International, to give two weeks of training to health workers in Zimbabwe. Henry Chidawanyika works for the group. He says Zimbabwe needs the help.

“It is very weak in terms of the ability to deliver, mostly because we don’t have enough personnel on the ground, we don’t have enough equipment, issues of infrastructure, power, connectivity. Health information is a cornerstone of a delivery of a health system, because if you don’t know where you are, then you don’t know where to go.”

Health care workers in Zimbabwe must deal with many diseases and epidemics. A working, dependable health information system will enable them to gather information about groups like pregnant women living with HIV. Medical workers can use that information to help such women receive antiretroviral therapy and treatment for tuberculosis.

相關閱讀

Televisions stole the spotlight at the consumer electronics show

Tablet computers most wanted gift this holiday

Watching for early signs of autism in babies

Words and their stories: Belittle

(來源:VOA 編輯:Julie)

 
中國日報網英語點津版權說明:凡注明來源為“中國日報網英語點津:XXX(署名)”的原創作品,除與中國日報網簽署英語點津內容授權協議的網站外,其他任何網站或單位未經允許不得非法盜鏈、轉載和使用,違者必究。如需使用,請與010-84883631聯系;凡本網注明“來源:XXX(非英語點津)”的作品,均轉載自其它媒體,目的在于傳播更多信息,其他媒體如需轉載,請與稿件來源方聯系,如產生任何問題與本網無關;本網所發布的歌曲、電影片段,版權歸原作者所有,僅供學習與研究,如果侵權,請提供版權證明,以便盡快刪除。
 

關注和訂閱

人氣排行

翻譯服務

中國日報網翻譯工作室

我們提供:媒體、文化、財經法律等專業領域的中英互譯服務
電話:010-84883468
郵件:[email protected]
 
 
主站蜘蛛池模板: 国产一区二区精品在线 | 亚洲欧美在线视频免费 | 在线一区视频 | 婷婷欧美| 国产精品99爱免费视频 | 欧美激情一区二区三区中文字幕 | 高清中文字幕视频在线播 | 国产成人免费高清激情视频 | 亚洲精品性视频 | 男女真实有遮挡xx00动态图 | 欧美在线你懂的 | 久久久久国产成人精品亚洲午夜 | 亚洲一区国产 | 一区二区三区日韩视频在线观看 | 北条麻妃国产九九九精品小说 | 成人网在线免费观看 | 天天操人人射 | 国产精品v欧美精品∨日韩 一级免费黄色免费片 | 欧美zzzz| 日韩中文字幕在线播放 | 欧美成人四级hd版 | 国产亚洲综合成人91精品 | 免费在线亚洲视频 | 亚洲欧美日韩精品中文乱码 | 激情五月色综合国产精品 | 久久久久欧美精品网站 | 久久一区二区三区不卡 | 韩国三级午夜理伦三级三 | 99视频有精品视频免费观看 | 无人精品乱码一区二区三区 | 久久福利青草精品资源 | 午夜成人在线视频 | 亚洲高清在线播放 | 日韩精品亚洲人成在线播放 | 日本v在线| sm高h视频 | 午夜小视频在线播放 | 久久久91 | 欧美精品一区二区免费 | 欧美精品九九99久久在观看 | 亚洲综合在线视频 |