日韩精品久久一区二区三区_亚洲色图p_亚洲综合在线最大成人_国产中出在线观看_日韩免费_亚洲综合在线一区

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

China's High Energy Photon Source enters final construction phase

By Yan Dongjie | chinadaily.com.cn | Updated: 2025-03-27 18:40
Share
Share - WeChat
The civil construction of HEPS campus is completed. [Photo provided to chinadaily.com.cn]

China's flagship synchrotron radiation facility, the High Energy Photon Source, has entered its final construction stage as it began the joint-commissioning phase, the Institute of High Energy Physics of the Chinese Academy of Sciences announced Thursday.

As one of China's key scientific facilities, HEPS occupies an area approximately equal to 90 football fields, but its mission is to illuminate the microscopic world at the nanometer scale.

It will be a fourth-generation synchrotron radiation facility and China's first high-energy light source designed to offer the highest brightness in the world, which is expected to start operation by the end of this year.

In March 2023, the first electron beam of HEPS was achieved via the Linac with the energy of 500 MeV. [Photo provided to chinadaily.com.cn]

It will serve as a research platform for material science, chemical engineering, biomedicine and other fields, said professor Pan Weimin from IHEP, director of the HEPS project.

Pan said that emittance is a critical parameter evaluating electron beam quality, while HEPS achieved a world-class electron beam emittance of 93 pm·rad in its storage ring this January, following a beam current exceeding 40 mA. The facility is able to produce the world's top high-quality bright synchrotron radiation.

"Lower emittance reduces lateral divergence of the electron beam, thereby producing brighter synchrotron radiation," he said.

In November 2023, the electron beam of HEPS was achieved more than 5 nC of bunch charge at 6 GeV via the booster. [Photo provided to chinadaily.com.cn]

HEPS is designed with accelerators, beamlines, end stations and support facilities. The IHEP started the construction in Huairou district in Beijing in 2019.

"The facility is built on 3 meters of plain concrete and 0.8 meters of reinforced concrete, which integrates the entire structure and achieves the goal of micro-vibrations of less than 25 nanometers during operation. In a regular building, even a simple foot stomp could cause nearby equipment to vibrate at the micron level," Pan said, adding that many technical bottlenecks were overcome during the construction process.

The storage ring of the facility is equipped with 1,776 magnets of various colors, which control the electron beam to stably run at high speeds within a thumb-width vacuum track.

On July 1, 2024, the last shielded bellows was installed in the tunnel, completing the installation of the HEPS storage ring and signifying that all components of the storage ring have been linked up. [Photo provided to chinadaily.com.cn]

The narrowest part of this electron track has a diameter of only two to three millimeters. During the construction of the facility, the installation of the vacuum boxes was prone to slight deformations.

"After repeated experiments, we found that the solution was surprisingly simple—by letting the products sit for a week or two after receiving them, until the metal stress is released, the problem is effortlessly resolved," Pan said in an interview with Beijing Daily.

On October 12, 2024, the high-energy synchrotron light from the W73 undulator in the HEPS storage ring was accurately delivered to the end station of HXI High Energy Imaging beamline, located 350 meters away. [Photo provided to chinadaily.com.cn]

The Hard X-ray Imaging (HXI) beamline, among the first set of beamlines constructed, is highlighted as one of the distinctive experimental platforms aimed at studying internal microstructures in engineering materials.

"This large facility is like an oversized X-ray machine, with its emitted light reaching an energy of up to 300 keV, capable of penetrating several centimeters of steel," said Dong Yuhui, HEPS executive deputy director.

Compared to a regular X-ray machine, its brightness is a trillion times greater, enabling us to see the microscopic world much more clearly, he said.

"HEPS can assist researchers in completing previously impossible tasks across fields from aerospace and nanotechnology to biomedicine and new materials development," he said.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 嫩草国产 | 欧美视频精品 | 欧美精品一区二区三区在线 | 奇米第四色在线观看 | 99精品视频在线视频免费观看 | 日韩高清第一页 | 哪里可以看免费的av | 色狠狠xx | 欧美日韩在线影院 | 久久狠狠一本精品综合网 | 国产一级毛片在线看 | 国产精品久久久爽爽爽麻豆色哟哟 | 青青青青娱乐 | 国产91对白叫床清晰播放 | 国产中文字幕在线 | 国产一级成人毛片 | 中国一级免费视频 | 在线播放一区二区三区 | 五月亭亭激情五月 | 欧美a级片视频 | 成人伊人| 亚洲精选一区 | 国产人妻互换一区二区水牛影视 | 精品一区二区免费视频 | 色阁阁日韩欧美在线 | 12306午夜被窝播播影院yw188 | 久久精品呦女 | 亚洲精品一区在线观看 | 免费看国产片 | 亚洲 偷拍 色播 | 日韩精品在线一区 | 热久热| 91精品中文字幕一区二区三区 | 天天干天天谢 | 亚洲色婷婷久久精品AV蜜桃久久 | 二区国产| 精品久 | 日韩色视频 | 国产福利视频在线 | 国产在线视频网 | 九九热九九 |